Practical AI Roadmap Workbook for Business Executives
A straightforward, no-jargon workbook showing how AI can truly benefit your business — and where it may not be useful.
The Dev Guys – Mumbai — Think deeply. Build simply. Ship fast.
Why This Workbook Exists
Modern business leaders face pressure to adopt AI strategies. AI discussions are happening everywhere—from vendors to competitors. But business heads often struggle between two bad decisions:
• Accepting every proposal and hoping it works out.
• Declining AI entirely because of confusion or doubt.
This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.
You don’t have to be technical; you just need to know your operations well. AI is simply a tool built on top of those foundations.
Best Way to Apply This Workbook
You can complete this alone or with your management team. The aim isn’t to finish quickly but to think clearly. By the end, you’ll have:
• A short list of meaningful AI opportunities tied to profit or efficiency.
• Understanding of where AI should not be used.
• A structured sequence of projects instead of random pilots.
Think of it as a guide, not a form. Your AI plan should be simple enough to explain in one meeting.
AI strategy equals good business logic, simply expressed.
Step One — Focus on Business Goals
Focus on Goals Before Tools
Most AI discussions begin with tools and tech questions like “Can we use ChatGPT here?” — that’s backward. Start with measurable goals that truly impact your business.
Ask:
• What 3–5 business results truly matter this year?
• Which parts of the business feel overwhelmed or inefficient?
• Which processes are slowed by scattered information?
AI is valuable only when it moves key metrics — revenue, margins, time, or risk. Ideas without measurable outcomes belong in the experiment bucket.
Start here, and you’ll invest in leverage — not novelty.
Understand How Work Actually Happens
Understand the Flow Before Applying AI
Before deciding where AI fits, observe how work really flows — not how it’s described in meetings. Ask: “What happens from start to finish in this process?”.
Examples include:
• Lead comes in ? assigned ? follow-up ? quote ? revision ? close/lost.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice issued ? tracked ? escalated ? payment confirmed.
Inputs, actions, outputs — that’s the simple structure. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.
Rank and Select AI Use Cases
Evaluate Each Use Case for Business Value
Evaluate AI ideas using a simple impact vs effort grid.
Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Big strategic initiatives take time but deliver scale.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.
Consider risk: some actions are reversible, others are not.
Begin with low-risk, high-impact projects that build confidence.
Balancing Systems and People
Fix the Foundations Before You Blame the Model
Without clean systems, AI will mirror your chaos. Check data completeness, process clarity, and alignment.
Human Oversight Builds Trust
Let AI assist, not replace, your team. Over time, increase automation responsibly.
The 3 Classic Mistakes
Avoid the Three AI Traps for Non-Tech Leaders
01. The Demo Illusion — excitement without strategy.
02. The Pilot Problem — learning without impact.
03. The Full Automation Fantasy — imagining instant department replacement.
Choose disciplined execution over hype.
Partnering with Vendors and Developers
Frame problems, don’t build algorithms. State outcomes clearly — e.g., “reduce response time 40%”. Share messy data and edge cases so tech partners understand reality. Agree on success definitions and rollout phases.
Request real-world results, not sales pitches.
Evaluating AI Health
How to Know Your AI Strategy Works
It’s simple, measurable, and owned.
Buzzword-free alignment is visible.
Ownership and clarity drive results.
Essential Pre-Launch AI Questions
Before any project, confirm:
• What measurable result does it support?
• Which workflow is involved, and can it be described simply?
• Do we have data and process clarity?
• Where will humans remain in control?
• What is AWS the 3-month metric?
• What’s the fallback insight?
Conclusion
Good AI brings order, not confusion. It’s not a list of tools — it’s an execution strategy. True AI integration supports your business invisibly.